Saturday, February 25, 2012

Arctic radiation animation


Below a part-image from www.seaice.dk and originating from the NOAA Polar Orbiter satellite's measurements of radiated heat, which provides pictures of the sea ice, as well as water vapor.

December 1, 2011, part-image from www.seaice.dk and originating from NOAA Polar Orbiter

The animation further below uses many such images and starts with five daily images showing a red area in the bay off the coast of Tiksi starting November 1, 2011. The animation continues to February 16, 2012, i.e. the last date for which images were made available when this post was written.

Large red areas show up end 2011 (particularly from November 25 till December 6) off the coast of Siberia, matching up with the dates mentioned in the earlier post Abrupt release of methane in the Arctic in late 2011.

From the very end of 2011, red areas also show up in the North of Canada.

Since methane has a very high immediate greenhouse effect, the heat detected on the images could well originate from methane releases. Furthermore, one of the indirect effects of methane releases is production of water vapor, which also has a strong greenhouse effect. Therefore, the red areas could well be seen as indications of methane releases.

Matching images like this minute by minute with AIRS images of methane could give a valuable insight in the contribution of methane to warming in the Arctic.

Below is the animation. Click on Read more if you don't see it. Note that this is a 17.7 MB file. It may take some time for the animation to fully load. 

Friday, February 24, 2012

Temperature anomalies continue in the Arctic

Much of the Arctic is showing huge temperature anomalies at the moment. The image below shows the anomalies for February 24, 2012.  


Locations in the Arctic have been showing temperature anomalies of over 20 degrees Celsius since late 2011

As the above image illustrates, the anomalies are centered around the 60 degrees East longitude, and they are most prominent between latitudes 75 North and 80 North, i.e. the area between Novaya Zemlya and Franz Josef Land, as shown on the map below. 


Not surprisingly, there's little sea ice in the area. The image below shows the sea ice as at January 15, 2012.


The animated image below, from U.S. Naval Research Lab showing the sea ice's thickness in February 2012, illustrates the retreat of the sea ice between Novaya Zemlya and Franz Josef Land in February 2012. 

The animation also illustrates that much of the sea ice is moving along with the sea current, flowing out of the Arctic Ocean along the edges of Greenland into the Atlantic Ocean. Click on Read more if you don't see the animation. The animation is a 800 kb file that may take some time to fully load.

Tuesday, February 21, 2012

Protecting the Arctic

U.K. Environmental Audit Committee, hearing February 21, 2012
Peter Wadhams (left) and John Nissen (right)
The meeting started at 2.12pm and ended at 4.08pm.

The video below starts with a presentation by Professor Tim Lenton, University of Exeter, who is not a member of the Arctic Methane Emergency Group. The video further features Professor Peter Wadhams, University of Cambridge, and John Nissen, Chair, Arctic Methane Emergency Group.

Click on Read More if you don't see the video (it may take some time for the video to start), the transcript and written submission below.

Monday, February 20, 2012

Abrupt release of methane in the Arctic in late 2011?


Was over 2 Megaton of methane released abruptly from hydrates in the Arctic in late 2011? Satellite images show high levels of methane at various locations in the Arctic over a period of 13 days (November 26, 2011, to December 8, 2011).

Methane was observed at various locations in the Arctic at levels of about 2000 parts per billion. Global levels are about 1820 parts per billion.

What could have caused these high levels in the Arctic?

There are no natural gas pipes at the North Pole that could be leaking, there are no drilling activities taking place, and there are no cows or termites. Since it was winter at the time, there were no algae blooms.

The best way to explain these high levels of methane at the North Pole is that was venting from hydrates at the North Pole and carried by the wind into North America.
Global wind circulation patterns - NSIDC image

In which direction would methane flow?

Polar easterlies are the prevailing wind patterns in the Arctic. When methane emerges at surface levels in the Arctic, these winds will drive it down to 60 degrees North latitude, where it will be further dispersed by the Polar Jet Stream (or Polar front).

How fast can methane be carried by the wind?

In the Arctic, winds have average speeds of 600 to 1032 kilometers per day on the Atlantic side in winter, while maximum wind speeds in the Atlantic region can approach 4320 kilometers per day in winter (Rajmund Przybylak, 2003: The Climate of the Arctic).


By comparison, the distance between Murmansk and Svalbard is about 1000 km (621 miles), as illustrated on the above map.

The animation below shows daily satellite pictures of methane descending down the Arctic, from the North Pole into North America over a period of 13 days (November 26, 2011, to December 8, 2011). Distances traveled daily appear to match average wind speeds for the respective area at this time of the year.

Note: This is a 2.17 MB file; it may take some time for the animation to fully load.

In conclusion, the animation suggests that methane is venting from hydrates in the Arctic at levels up to 2000 parts per billion. These high levels can cover areas as large as Greenland. Total surface of Earth is 510,072,000 square kilometers, and Greenland has a surface of 2,166,086 square kilometers, one 235th that of Earth.

The total methane burden on Earth is about 5 Gt, corresponding with a level of 1820 parts per billion. Thus the burden over an area the size of Greenland would be one 235th of 5 Gigaton, or 21 Megaton. A level of 2000 parts per billion is about ten percent higher than the world's average level of 1820 parts per billion. Thus, the methane that shows up in the animation could result from abrupt release of some 2.1 Megaton of methane from hydrates in the Arctic.

Wednesday, February 15, 2012

Arctic methane threat at Radio Ecoshock

The Arctic methane threat is featured at Radio Ecoshock.



Click on the player below to hear the audio:



Or, go to ARCTIC EMERGENCY Global Threat, and hear the audio while viewing more background.

 

Tuesday, February 14, 2012

Video: East Siberian Arctic Shelf Expedition 2011


East Siberian Arctic Shelf Expedition 2011.

In an interview published February 9, 2012, expedition leader Dr. Igor Semiletov said: "the methane release that we have identified in the Arctic is both unprecedented in terms of its volume and has the potential to increase greatly if warming trends continue."



Video uploaded by the International Arctic Research Center (IARC) at the University of Alaska Fairbanks (UAF) at Youtube:
http://www.youtube.com/watch?v=b73wLHoiQyI

Also view map of the study area explored during the expedition. 

Saturday, February 11, 2012

Methane venting in the Arctic




Above chart, based on historic NASA land-surface air temperature anomaly data (see interactive map at the bottom of this page), shows that the average temperature anomaly rise in the Arctic (latitude 64 and higher) looks set to reach 10°C within decades. 

These anomalies are based on annual averages that are also averaged over a huge area. The NASA image on the left shows temperature anomalies of over 10°C for the month December 2011.  

More detailed analysis shows that, over December 2011, the highest average temperature anomaly (12.8933°C) was recorded in the Kara Sea (latitudes 79 - 81 and longitudes 73 - 89).

NOAA daily data show even more prominent anomalies, especially for the area from the Kara Sea over Franz Josef Land to Svalbard (see Wikipedia image left). 

NOAA temperature anomalies for January 31, 2012, seem typical for the over 20°C anomalies that this area has experienced over the period December 7, 2011, to February 11, 2012. 

An animated image with the full data over the period December 7, 2011, to February 11, 2012, is displayed in an earlier post at this blog, temperature anomalies over 20 degrees Celsius. (Note: this is a 4.7MB file that may take some time to fully load.) 


How is it possible for this specific area to show such huge temperature anomalies? 

1. Rivers?

Could it be that warm water from rivers flows into the Kara Sea and is transferred to the atmosphere in this area? This seems unlikely, given that it is winter, while the mainland does not appear to be suffering similar temperature anomalies. The NOAA map below with anomalies for water temperatures (at surface level) also shows no particular anomalies for the Kara Sea.



2. Warm water from the Atlantic Ocean?

Above image shows that the water surface temperature anomalies are most prominent just north of Scandinavia. The reason for this is that thermohaline circulation is pushing warm water from the Atlantic Ocean into the Arctic Ocean, as evident when looking at actual water temperatures (image below). 


As above image shows, warm water from the Atlantic Ocean hasn't (yet) penetrated the Kara Sea, which makes sense in winter. Therefore, this also seems an unlikely candidate to explain the over 20°C air surface temperature anomalies in the area stretching from the Kara Sea over Franz Josef Land to Svalbard. 

3. Methane? 

A third possibility is that methane is venting from hydrates in the Arctic and is spread by the wind around the Arctic. This would explain the record methane level of 1870+ reached in the Arctic for January 2012, as shown on the image below. 

Particularly worrying is that this methane continues to rise. In the past, methane concentrations have fluctuated up and down in line with the seasons. Over the past seven months, however, methane has shown steady growth in the Arctic. Such a long continuous period of growth is unprecedented, the more so as it takes place in winter, when vegetation growth and algae bloom is minimal. The most obvious explanation for both the temperature anomalies in the Arctic and above image is that the methane is venting from hydrates in the Arctic.

See animation of methane levels July 2011 - January 2012